
Int . . l .  Msltiphase Flow, Vol. 3, pp. 23-33. Pergamon/Elsevier, 1976. Printed in Cheat Britain. 

M A G N E T O H Y D R O D Y N A M I C  P R E S S U R E  DROP 
IN D U C T E D  T W O - P H A S E  F L O W S  

R. G. OwE~, J. C. R. Hmcrt and J. G. COLLIER 
A.E.R.E. Harwell, Didcot, Oxon 

(Received I July 1975) 

Abstract--Two models are presented for  predicting magnetohydrodynsmic pressure drop in two phase 
gas-liquid flows of conducting fluids for large values of Hartmann number. The first of these models treats the 
gas-liquid mixture as a single homogeneous pseudofluid with averaged mixture properties. The second model 
assumes that the flow pattern is one where the liquid is displaced to the duct walls as a liquid film and the gas 
flows in the central core. It is shown that the two models do not differ significantly in their predictions of 
overall pressure drop for vaporising two-phase flow of potassium. There is little experimental data available 
for testing the models but very satisfactory agreement is found between memurements of magnetic pressure 
drop of NaK-nitrogen mixtures at low quality and the predictions of both models. 

1. INTRODUCTION 

During the last 5 years, a great deal of effort has been expended both in analysing 
magneto-hydrodynamic single phase duct flows and in experimentally verifying the results of 

ese analyses (Hunt & Shercliff 1971; Branover & Tsinsober 1970). Very little attention has, 
owever, been directed to the prediction of gas-fiquid two-phase magneto-hydrodynamics. This 

is not surprising--the highly empirical natuf6 of two-phase flow analyses gives little hope for the 
prediction of two phase MHD flows without extensive experimental data, which is not currently 
available. One limiting case is, however, amenable to study; that of two-phase flow in which the 
Hartmann number for the liquid phase is very large (electro-magnetic stresses dominate the 

viscous stresses). 
This limiting case, moreover, has practical significance. For example, in a steady state 

deuterium-tritium fusion reactor, a high temperature reacting plasma is magnetically confined 
and'produces the majority of its reaction energy as 14 MeV neutrons. These neutrons are 
thermalised in a lithium bearing blanket from which heat has to be recovered at a sufficiently high 
temperature for the efficient generation of electrical power. One proposed method for cooling this 
lithium blanket is to employ potassium as a heat-transfer fluid. Liquid potassium is pumped 
through the toroidal confining magnetic field into the lithium blanket region in which it is boiled 
and from which it emerges as a vapour which is passed through a turbine or heat exchanger. The 
computation of pressure losses in such a primary coolant circuit requires knowledge of the 
pressure drop occurring in the MHD two-phase boiling region. 

In this paper, two simple models are presented for the computation of pressure drop in MHD 
two-phase flow at high Hartmann numbers. A comparison is made between the predictions of the 
two models for the case of potassium boiling at constant heat flux in a uniform duct. The 
predictions of each model are also compared with some limited experimental data for pressure 
drop in the two-phase MHD flow of NaK-nitrogen mixtures in a vertical rectangular duct. 

2. FLOW MODELS 

2.1 Homogeneous model 
This model assumes that the two-phase flow may be adequately represented by a single-phase 

flow having pseudo-properties calculated by suitably weighting the properties of the individual 
phases. An equivalent two-phase electrical conductivity has been derived by Hall-Taylor (1967) 
as" 

trrp = C~L/(I + 1300X) [1] 

tUniversity of Cambridge. 
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based on experimental data for air-water and potassium. In [1], o-~ is the equivalent electrical 
conductivity of the two-phase mixture, or,. is the electrical conductivity of the liquid phase and X 
is the mass quality of the flow. This form of correlationt implies that the two-phase electrical 
conductivity is independent of the density ratio of the phases. Strictly, this cannot be true, but 
though there is probably a weak dependence of o-rp on the density ratio p~./po, use of [1] should 
be reasonably accurate for most systems. An equivalent two-phase volumetric flowrate is 
defined: 

[ xfVo- vq] 
Qr~=Q I+ [ VL JJ [2] 

where Q ~  is the two-phase volumetric flowrate, Q is the equivalent liquid volumetric flowrate, 
Vo is specific volume of the gas phase and VL is the,liquid specific volume. If ~rw is the electrical 
conductivity of the duct wall, t is the wall thickness and r the hydraulic radius of the duct, an 
equivalent wall conductance ratio for two-phase flow @r~, may be defined: 

[o'wt ]= 
= to '~ r J  4, (1 + 1300X), [31 

provided there is no contact resistance between the fluid and the wall. In [3], qb is the wall 
conductance ratio for a pure liquid flow. An equivalent two-phase Hartmarm number M~, is 
given by: 

Mrp = rB(o '~ lvn , )  '12 [4] 

where B is the magnetic field intensity transverse to the flow and vrr is th equivalent two-phase 
kinematic viscosity. If ~ is equated with the liquid phase kinematic viscosity uL, the equivalent 
two-phase Hartmann number becomes: 

Mre = ML/(1 + 1300X)" [51 

where Mr. is the liquid phase Hartmann number. 
The homogeneous model for two-phase pressure drop at high Hartmann numbers yields (Hunt 

& Hancox 1971): 

= - Q  1 
A [1 + ~ , J "  

[6l 

In [6] ap/Oz[~ is the two-phase axial pressure gradient and A is the duct cross-sectional area. For 
mass qualities of 0.05 < X < 1, ~ ,  ~, 1 then: 

, ,  
1 + 1300X 

Equation [7] directly relates the two-phase pressure gradient to the pressure gradient which 
would exist if liquid only flowed through the duct at the same mass velocity as the two-phase 
mixture. The latter is readily computed from well-established equations (Hunt & Hancox 1971). 

A more sophisticated approach is to specify a "flow pattern" within the framework of an 
idealised representation. It, therefore, appears necessary to direct attention to a flow pattern in 
which there is a liquid continuum adjacent to the duct wall while in the centre of the duct there is a 

fAlternafive forms of correlation express the two-phase electrical conductivity as a function of void fraction (Fujiie & Suita 
1974), 
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vapour continuum. Such a flow is commonly termed "annular flow" (Hewitt & Hall-Taylor 1970) 
and typically occurs over a substantial portion of the boiling region in a duct. In this paper, the 
terms "annular flow" and "film flow" will denote a flow in which the liquid is displaced to the heated 
walls and the vapour is a continuum in the central core of the duct. 

2.2 Two-phase "'annular" MHD flow 
Consider a rectangular duct with an applied transverse uniform magnetic field (figure 1). A 

conducting fluid of electrical conductivity or flows through the duct and is initally all liquid. To the 
top and bottom faces of the duct is applied a constant heat flux h. Attention is focussed on the 
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Figure 1. Assumed flow pattern for the film flow model. 

two-phase region. The first bubbles of vapour formed at the duct surface will tend to produce a 
bubbly flow but an "annular" flow regime should be quickly established. The flow is characterised 
by gradual thinning of the liquid film and increasing vapour flow--the liquid phase experiences a 
large MHD force opposing its motion while the vapour flow exerts a large interfacial drag force 
on the liquid film. To make analysis tractable, the "annular" flow condition will be assumed to 
commence at the inception of vapour formation. For large values of Hartmann number (i.e. 
provided fB(~lv)l~2> 130fULh,) the large magnetic damping forces in the liquid phase will 
prevent the onset of turbulence in the liquid film. In the above inequality, f is the liquid film 
thickness, and UL is the liquid phase velocity. Wave formation at the vapour-liquid interface may 
be suppressed, greatly decreasing phase interaction and entrainment. The simplifying assumption 
is made that the vapour liquid interface is smooth and that there is no entrainment from the liquid 
film to the vapour core. 

The effect of the magnetic field on the two-phase flow may now be considered. The motion of 
the conducting fluid induces an electric field U x B in the liquid phase, where U is the velocity and 
B the local magnetic flux density. Typical current paths for two-phase "annular" flow in a 
rectangular duct are shown in figure 2. If the walls of the duct are electrical insulators the currents 
generated in the bulk of the liquid film return through the film itself. If the duct walls are highly 
conducting then the currents return through the duct walls. The electric currents induce their own 
magnetic field which is mainly directed along the duct because the currents flow in transverse 
loops. The ratio of this induced field to the imposed magnetic field is known as the Magnetic 
Reynolds number and is usually small. 

Consider the flow at a cross section such as A-A in figure 1. Conservation of mass in the duct 
requires: 

f o a -Y) f ~ = rh O~ U~ dy + gL UL dy = ~ [8] 
Q - .  4b 

where pG is the gas-phase density, pL is the liquid-phase density, a is the half width of the duct, b 
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Figure 2. Electric current paths in two-phase flow due to a strong transverse magnetic field. The velocity is 
out of the page. 

is the half breadth of the duct and rn is the total mass flow through the duct. The Liquid-phase 
velocity is UL. If the fluid properties and saturation temperature are only slowly varying along the 
channel, an elemental heat balance yields: 

which reduces to: 

d = dy} [9] 

h --ffz ozl, 
a -f) 

[lo] 

where a is the latent heat of vaporization per ugit mass, y is the transverse space coordinate and z 
is the axial coordinate. If the liquid flow is assumed to be laminar, an elemental force balance for the 
film may be written as: 

2+ O~UL 
- OP + - crUr.B t Z L - ~  = O, [11] 

where E~ is the induced electric field. For the gas phase, provided acceleration effects are not 
significant, a force balance exists between the pressure gradient and the shear force at the 
vapour-liquid interface: 

az (a - f ) '  

where C is a frictional coefficient, evaluated assuming that the vapour flows through an 
essentially stationary duct. For the large gas to liquid relative velocities which would be 
characteristic of these MHD flows, this approximation should be accurate. The frictional 
coefficient is estimated from the results for smooth-walled tubes (the liquid surface may have 
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waves on it which would increase the drag coefficient):

27

C = 16/ReG; 0 < ReG";; 2000, [13a]

C = ~ {O.86859In [ReG/1.964 In ReG] - 3.8215r2 for ReG> 2000. [13b]

In [13], ReG is the gas phase Reynolds number, defined 4UG(a - f)b/vG' Induced eddy currents
are assumed to circulate in the x-y plane (this is only true provided UL and t vary slowly along
the duct) thus, if the duct walls are thin, of thickness t and conducting with electrical
conductivity aw :

but:

Hence:

aEx=O
ay .

Ex = B r
a

UL dy //(l + cf>f),
J(a-n

[14]

[15]

[16]

where cf>f is the relative conductance of the duct wall to the film (awt/aLf). From [16] it may be
observed that (aEx/az) i' 0 and since (aR/ax) = (aEx/az), a current jz is induced in the film. This
implies that the pressure within the duct varies with the x -coordinate so that the thickness of the
liquid film varies across the duct. This effect is small, however, because change in Ex takes place
over a distance large compared with "a" or "b".

Equations [8], [9], [11], [12] and [16] comprise a set of five equations for the parameters UL ,

UG , t, Ex, (ap/az).
The following boundary conditions apply. Liquid film velocity is zero at the solid surfaces

hence:

y = ±a; [l7a]

There is no discontinuity in the velocity profile at the gas-vapour interface (a discontinuity would
imply a locally infinite shear stress);

y = ±(a - f); [17b]

The shear stress exerted by the liquid on the vapour phase at the interface, 7'1, must equal the
shear stress exerted by the vapour flow on the liquid film:

[17c]

The film flow of liquid at any section must equal the total liquid flow at inlet less the quantity
vaporised. Thus:

UL/=- r~dz+aULI .Jo IlPL z~O
[17d]
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2.3 Solution procedure 
For large liquid film Hartmann numbers, viscous effects in the film may be neglected so that 

the velocity in the film UL will be independent of y. In fact, as illustrated in figure 3, there are thin 
Hartmann layers both on the wall and on the liquid-air interface. These I-Iartmannlayers have a 
characteristic thickness of (f/M) where f is the liquid film thickness and M is the Hartmann 
number. 

Combining [11] and [16] yields: 

[18] 

Similarly, [8] and [12] may be combined to give: 

3/2 O.~ 

.,-- [19] 

Equations [18], [17] and [19] are solved iteratively using a Newton-Raphson procedure for 
specified values of rh, h, A, a, b, B, crw, t, o', pG and 9L. 
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Figure 3. The velocity profiles for the gas and liquid phases. 
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3. DISCUSSION OF RESULTS 

Sample results are presented for the boiling of potassium in a retangular duct. 
Figures 4, 5 and 6 present the variation of UL, f, E~, (gp/Oz) and ma with axial position for 

values of input parameters given below in table I. It may be observed that the film flow model 

predicts that the liquid film remains appreciably thick for a considerable rein and ~en rapidly 
thins. When the liquid film becomes thin, viscous and turbulent effects dominate and the flow 
becomes like the usual viscous dominated two-phase annular flow. 

For thick films, MHD film flow behaves differently from the more common viscous film flow. 
In the latter case the film is reduced both by evaporation and by axially increasing inteffacial 
shear forces whereas in the former case film thickness is determined by a local balance between 
MHD holdup and evaporation effects. 

Table 1. Input parameters for two-phase boiling potassium 

Parameter Numerical value Parameter Numerical value 

6z 0.00127 (kg/s) t 0.I x 10 -2 (m) 
h 2 x I0" (W/m 2) 9,~ 0.53 (kg/m ~) 
X 1.87 x 10 ~ (J/kg) 9L 662.2 (kglm ~) 
a 1 × 10 -2 (m) ~ 2.49 x 10-' (kg/ms) 
b 2x 10-~ (m) o" 1.35x 10~(f~-~/m) 
B 5.0(T) (Va - VL)/VL 1300(~) 
o', 5x 10s(fl-'/m) ~L 1.29x I0-" (kg/ms) 
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Figure 4. Liquid film thickness and vapour ~owrate variation with axial distance as computed by the film flow 
model. 
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Figure 5. Pressure gradient and liquid veiocith variation in the two-phase boiling region. 

Figures 4, 5 and 6 show that the MHD film model predicts that the pressure gradient decreases 
in a near linear manner to the single phase value at the point of dryout. At a constant applied 
heating rate, the mass flow of vapour increases linearly. The slightly anomolous behaviour of the 
film flow model at very low qualifies is attributable to the laminar-turbulent transition in the gas 
phase--in reality the flow pattern would be bubbly at such low qualities. 

Comparisons have been made between the pressure drops predicted by the two models for 
boiling flow of potassium in a rectangular duct. Graphs 7-10 show the effect of various 
parameters on predicted pressure-drop in a two-phase boiling potassium flow. From these figures, 
it may be observed that for a given duct; 

(1) The discrepancy between predicted pressure gradients remains approx constant as the 
heat flux increases. 
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(2) As the mass flow is decreased, the discrepancy between the predicted pressure gradients 
tends to increase. 

(3) The disagreement in predicted pressure gradients between the homogeneous model and 
the film model is, the first approximation, independent of magnetic field intensity. 

(4) The discrepancy between predicted pressure gradients tends to increase as the wall 
thickness increases. 

These observations indicate the effect of different parameters on the pressure gradient 
predicted by two different models of two-phase flow in a duct at high Hartmann numbers. The 
model in which a specific flow pattern is assumed (the film flow pattern, in this case) generally 
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predicts lower pressure gradients in boiling potassium than does the model in which the phases 
are considered as a homogeneous mixture. 

There is little experimental data available with which to test the above models. To the authors' 
knowledge the only reported experimental data is that of Thome (1964) and this data is limited to 
very small mass qualities. Thome measured the magnetic pressure drop for two-phase flow of 
NaK (78% K, 22% Na) and nitrogen in a vertical rectangular duct, (0.052 m, 0.0064 m). A magnetic 
field of maximum intensity 0.784 tesla was applied to a 0.102 m length of the duct. The proposed 
analytical models have been compared with the data of Thome for an NaK flowrate of 0.378 kg/s 
and a magnetic field strength of 0.784 tesla (figure t2). For the homogeneous model, the single 
phase liquid MHD pressure drop was computed from: 

z 1 
Ap =0.1032o'LB U L [ ~ T +  6L ~+o" BZU b '4'''j2 1 + q~LJ L L ~ = )  [20] 

where d' is the wall conductivity ratio based on b. 
In figure I1, the above formula is shown to agree closely with Thome's single phase 

experimental data. The second term in [20] is an "end-effect" correction. A similar end-effect 
correction was applied to the pressure drops predicted by the film flow model and allows for the 
region of decreasing magnetic field strength outside the magnetic poles. It may be observed that 
both analytical models predict pressure drops which compare very satisfactorily with the values 
derived from direct measurements. It should be noted, however, that the flowrates in Thome's 
experiments are such that fB(o'/~,)'/~< 130fUL/v so that the liquid film is probably turbulent. 
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CONCLUSIONS 

A simple homogeneous model of two-phase MHD pressure drop at large Hartmann numbers 
is presented and compared with the predictions of a more sophisticated film flow model. For 
once-through, induct vaporisation of potassium the two models usually predict overall two-phase 
pressure gradients which agree within 50% although, in certain cases, discrepancies up to 100% 
are observed. 
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